Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Article | IMSEAR | ID: sea-215921

ABSTRACT

Nanoparticles are widely applied in all aspects of modern life because of their unique features such as small size and high surface area.Several types of research have been carried out to discover the feasible detrimental impacts of Nano-particles on human reproduction. The purpose of this study was to examine the impact of zinc oxide nanoparticles in mature male rats through examining LH, FSH, and testosterone sex hormones. Therefore, 30 Naked Mole-RatInitiative (NMRI) rats were divided into 5 groups. Different doses of zinc oxide nanoparticles (250, 500 and 700 mg.kg-1) were intraperitoneally injected to animals only once. Then, the serum level of luteinizing hormone(LH), Follicle StimulatingHormone (FSH), and testosterone hormones were measured using Enzyme-Linked Immunosorbent Assay (ELISA) method after 21 days. The results were analyzed by ANOVA and Tukey tests. The results indicated that zinc oxide nanoparticles doses caused a significant increase in FSH and testosterone level of blood (Respectively) in 250 and 700mg.kg-1in comparison with the control group. Moreover, this research illustrated that zinc oxide nanoparticle can cause a dose-related increase in Testosterone and FSH hormones levels while causing no significant change in LH hormone level

2.
Braz. J. Pharm. Sci. (Online) ; 54(3): e17596, 2018. tab, graf
Article in English | LILACS | ID: biblio-974416

ABSTRACT

Citral is a small molecule present in various citrus species, with reported anti-hyperlipidemic and anti-inflammation effects. Here, the effect of intraperitoneal (IP) administration of citral is evaluated in a mouse model of non-alcoholic steatosis. Male NMRI mice were divided into the following groups (n = 12): normal control group (NC) receiving a normal diet; high-fat emulsion group (HF) receiving high fat diet for four weeks; positive control group (C+) receiving HF diet for four weeks and then shifted to normal diet with IP-administered silymarin (80 mg/kg) for four weeks; sham group receiving HF diet for four weeks and then shifted to normal diet for four weeks; and EC1, EC2, and EC3 groups receiving HF diet for four weeks and then shifted to normal diet with IP-administered citral doses of 5, 10, and 20 mg/kg, respectively. HF diet resulted in steatohepatitis with impaired lipid profile, high glucose levels and insulin resistance, impaired liver enzymes, antioxidants, adiponectin and leptin levels, decreased PPARα level, and fibrosis in the liver tissue. Upon treatment with citral, improvement in condition was observed in a dose-dependent manner-both at histological level and in the serum of treated animals. and the PPARα level was also increased.


Subject(s)
Animals , Male , Rats , Gene Expression/physiology , PPAR gamma/analysis , End Stage Liver Disease/diagnosis , Silymarin/pharmacology , Citrus , Non-alcoholic Fatty Liver Disease/diagnosis
3.
Braz. arch. biol. technol ; 60: e17160083, 2017. tab, graf
Article in English | LILACS | ID: biblio-951453

ABSTRACT

ABSTRACT Nanotubes with their unique properties have diversified mechanical and biological applications. Due to similarity of dimensions with extracellular matrix (ECM) elements, these materials are used in designing scaffolds. In this research, Carboxylated Single-Wall Carbon Nanotubes in optimization of decellularized scaffold of bovine articular cartilage was used. At first, the articular cartilage was decellularized. Then the scaffolds were analyzed in: (i) decellularized scaffolds, and (ii) scaffolds plunged into homogenous suspension of nanotubes in distilled water, were smeared with Carboxylated-SWCNT. The tissue rings derived from the rabbit's ear were assembled with reinforced scaffolds and they were placed in a culture media for 15 days. The scaffolds in two groups and the assembled scaffolds underwent histologic and electron microscopy. Scanning electron microscopy showed that the structure of ECM of articular cartilage has been maintained well after decellularization. Fourier transform infrared analysis showed that the contents of ECM have not been changed under treatment process. Atomic force microscopy analysis showed the difference in surface topography and roughness of group (ii) scaffolds in comparison with group (i). Transmission electron microscopy studies showed the Carboxylated-SWCNT bond with the surface of decellularized scaffold and no penetration of these compounds into the scaffold. The porosity percentage with median rate of 91.04 in group (i) scaffolds did not have significant difference with group (ii) scaffolds. The electron microscopy observations confirmed migration and penetration of the blastema cells into the group (ii) assembled scaffolds. This research presents a technique for provision of nanocomposite scaffolds for cartilage engineering applications.

4.
Acta cir. bras ; 30(9): 611-616, Sep. 2015. tab, ilus
Article in English | LILACS | ID: lil-761490

ABSTRACT

PURPOSE:To investigate if low level laser therapy (LLLT) can decrease spinal cord injuries after temporary induced spinal cord ischemia-reperfusion in rats because of its anti-inflammatory effects.METHODS: Forty eight rats were randomized into two study groups of 24 rats each. In group I, ischemic-reperfusion (I-R) injury was induced without any treatment. Group II, was irradiated four times about 20 minutes for the following three days. The lesion site directly was irradiated transcutaneously to the spinal direction with 810 nm diode laser with output power of 150 mW. Functional recovery, immunohistochemical and histopathological changes were assessed.RESULTS:The average functional recovery scores of group II were significantly higher than that the score of group I (2.86 ± 0.68, vs 1.38 ± 0.09; p<0.05). Histopathologic evaluations in group II were showed a mild changes in compare with group I, that suggested this group survived from I-R consequences. Moreover, as seen from TUNEL results, LLLT also protected neurons from I-R-induced apoptosis in rats.CONCLUSION:Low level laser therapy was be able to minimize the damage to the rat spinal cord of reperfusion-induced injury.


Subject(s)
Animals , Male , Low-Level Light Therapy/methods , Reperfusion Injury/radiotherapy , Spinal Cord Injuries/radiotherapy , Spinal Cord Ischemia/radiotherapy , Spinal Cord/blood supply , Immunohistochemistry , In Situ Nick-End Labeling , Lasers, Semiconductor/therapeutic use , Random Allocation , Rats, Wistar , Reproducibility of Results , Spinal Cord Injuries/rehabilitation , Spinal Cord Ischemia/rehabilitation , Time Factors , Treatment Outcome
5.
Acta cir. bras ; 28(6): 407-411, June 2013. ilus, tab
Article in English | LILACS | ID: lil-675573

ABSTRACT

PURPOSE: To investigate if the methanolic extract of the Otostegia persica can accelerating healing process of burn wound because of its anti-inflammatory and antioxidant effects. METHODS:Forty eight male Wistar rats were randomized into three study groups of 16 rats each. Burn wounds were created on dorsal part of shaved rats using a metal rod. In group I the burn wound was left without any treatment. Group was treated with topical silver sulfadiazine pomade. In group III, ointment containing the OP extract was administered. Skin biopsies were harvested from burn area on the 3rd, 5th, 14th and 21st days after burn and examined histologically. RESULTS: Re-epithelialization in the control group and in group II was lower than in group III. Re-epithelialization in groups II and III was significantly different from that in the control group. On the 5th day of the experiment, we assessed lower inflammation in the burn area compared to control group. This means that the inflammation was suppressed by methanolic extract of OP. From day 5 to 14; the fibroblast proliferation peaked and was associated with increased collagen accumulation. It was obvious that angiogenesis improved more in the groups II and III, which facilitated re-epithelialisation. CONCLUSION:Methanolic extract of Otostegia persica exhibited significant healing activity when topically applied on rats. OP is an effective treatment for saving the burn site.


Subject(s)
Animals , Male , Rats , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Burns/drug therapy , Lamiaceae/chemistry , Plant Extracts/therapeutic use , Wound Healing/drug effects , Biopsy , Burns/pathology , Random Allocation , Rats, Wistar , Reproducibility of Results , Skin/drug effects , Skin/pathology , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL